Data Science Series: Predicting gender and age range of an individual using OpenCV in Python.¶

Age and gender prediction are used extensively in the field of computer vision for surveillance. Advances in computer vision have made this prediction much more practical and accessible to the general public. Because of its utility in intelligent real-world applications, this study topic has seen significant advancements.

Application¶

A person’s identity, age, gender, emotions, and ethnicity are all determined by the traits on their face. Security and video surveillance, electronic customer relationship management, biometrics, electronic vending machines, human-computer interface, entertainment, cosmetology, and forensic art are just a few of the real-world applications where age and gender classification might come in handy.

Implementation¶

Typically, you’ll see age detection implemented as a two-stage process:

  1. Stage 1: Detect faces from the input image
  2. Stage 2: Extract the face Region of Interest (ROI), and apply the age detector algorithm to predict the age of the person

Importing Libraries¶

In [1]:
import cv2
import math
import argparse

Finding Bounding Box Coordinates¶

In [2]:
def highlightFace(net, frame, conf_threshold=0.7):
    frameOpencvDnn=frame.copy()
    frameHeight=frameOpencvDnn.shape[0]
    frameWidth=frameOpencvDnn.shape[1]
    blob=cv2.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)

    net.setInput(blob)
    detections=net.forward()
    faceBoxes=[]
    for i in range(detections.shape[2]):
        confidence=detections[0,0,i,2]
        if confidence>conf_threshold:
            x1=int(detections[0,0,i,3]*frameWidth)
            y1=int(detections[0,0,i,4]*frameHeight)
            x2=int(detections[0,0,i,5]*frameWidth)
            y2=int(detections[0,0,i,6]*frameHeight)
            faceBoxes.append([x1,y1,x2,y2])
            cv2.rectangle(frameOpencvDnn, (x1,y1), (x2,y2), (0,255,0), int(round(frameHeight/150)), 8)
    return frameOpencvDnn,faceBoxes

Loading Model and Weight Files¶

In [3]:
faceProto="opencv_face_detector.pbtxt"
faceModel="opencv_face_detector_uint8.pb"
ageProto="age_deploy.prototxt"
ageModel="age_net.caffemodel"
genderProto="gender_deploy.prototxt"
genderModel="gender_net.caffemodel"

Mentioning Age and Gender Category List¶

In [4]:
MODEL_MEAN_VALUES=(78.4263377603, 87.7689143744, 114.895847746)
ageList=['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList=['Male','Female']

Read Image¶

In [9]:
faceNet=cv2.dnn.readNet(faceModel,faceProto)
ageNet=cv2.dnn.readNet(ageModel,ageProto)
genderNet=cv2.dnn.readNet(genderModel,genderProto)

video=cv2.VideoCapture('karan.jpg')
padding=20

Function to Predict Gender and Age¶

In [10]:
while cv2.waitKey(1)<0:
    hasFrame,frame=video.read()
    if not hasFrame:
        cv2.waitKey()
        break

    resultImg,faceBoxes=highlightFace(faceNet,frame)
    if not faceBoxes:
        print("No face detected")

    for faceBox in faceBoxes:
        face=frame[max(0,faceBox[1]-padding):
                   min(faceBox[3]+padding,frame.shape[0]-1),max(0,faceBox[0]-padding)
                   :min(faceBox[2]+padding, frame.shape[1]-1)]

        blob=cv2.dnn.blobFromImage(face, 1.0, (227,227), MODEL_MEAN_VALUES, swapRB=False)
        genderNet.setInput(blob)
        genderPreds=genderNet.forward()
        gender=genderList[genderPreds[0].argmax()]
        print(f'Gender: {gender}')

        ageNet.setInput(blob)
        agePreds=ageNet.forward()
        age=ageList[agePreds[0].argmax()]
        print(f'Age: {age[1:-1]} years')

        cv2.putText(resultImg, f'{gender}, {age}', (faceBox[0], faceBox[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0,255,255), 2, cv2.LINE_AA)
        cv2.imshow("Detecting age and gender", resultImg)
Gender: Male
Age: 25-32 years