Thursday , September 12 2024
Suicide Case Study – NumPy

Suicide Case Study – NumPy

13 Suicide Case Study – Numpy

Import Libraries

In [2]:
import numpy as np

Read CSV

In [3]:
data = np.genfromtxt('Suicidesindia2001-2012.csv',delimiter=',',dtype=str)
data
Out[3]:
array([['State', 'Year', 'Type_code', ..., 'Gender', 'Age_group',
        'Total'],
       ['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ...,
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '5451'],
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '189'],
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '2658']], dtype='<U46')
In [4]:
data = data[1:,:]
data
Out[4]:
array([['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ...,
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '5451'],
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '189'],
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '2658']], dtype='<U46')

Inspect data structure

In [5]:
data.shape
Out[5]:
(237519, 7)

Unique Data

In [6]:
data[...,0]
Out[6]:
array(['A & N Islands', 'A & N Islands', 'A & N Islands', ...,
       'West Bengal', 'West Bengal', 'West Bengal'], dtype='<U46')
In [7]:
np.unique(data[...,0])
Out[7]:
array(['A & N Islands', 'Andhra Pradesh', 'Arunachal Pradesh', 'Assam',
       'Bihar', 'Chandigarh', 'Chhattisgarh', 'D & N Haveli',
       'Daman & Diu', 'Delhi (Ut)', 'Goa', 'Gujarat', 'Haryana',
       'Himachal Pradesh', 'Jammu & Kashmir', 'Jharkhand', 'Karnataka',
       'Kerala', 'Lakshadweep', 'Madhya Pradesh', 'Maharashtra',
       'Manipur', 'Meghalaya', 'Mizoram', 'Nagaland', 'Odisha',
       'Puducherry', 'Punjab', 'Rajasthan', 'Sikkim', 'Tamil Nadu',
       'Total (All India)', 'Total (States)', 'Total (Uts)', 'Tripura',
       'Uttar Pradesh', 'Uttarakhand', 'West Bengal'], dtype='<U46')
In [8]:
np.unique([data[...,4]])
Out[8]:
array(['Female', 'Male'], dtype='<U46')
In [9]:
np.unique(data[...,1])
Out[9]:
array(['2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008',
       '2009', '2010', '2011', '2012'], dtype='<U46')
In [10]:
np.unique(data[...,2])
Out[10]:
array(['Causes', 'Education_Status', 'Means_adopted',
       'Professional_Profile', 'Social_Status'], dtype='<U46')

Data Filteration

In [11]:
Punjab = data[data[...,0]=='Punjab']
Punjab
Out[11]:
array([['Punjab', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ['Punjab', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ['Punjab', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ...,
       ['Punjab', '2012', 'Social_Status', ..., 'Male', '0-100+', '4'],
       ['Punjab', '2012', 'Social_Status', ..., 'Male', '0-100+', '299'],
       ['Punjab', '2012', 'Social_Status', ..., 'Male', '0-100+', '470']],
      dtype='<U46')

Save Data to CSV File

In [12]:
np.savetxt("Punjab.csv",Punjab,fmt='%s',delimiter=",")

Punjab 2008

In [13]:
Punjab = data[data[...,0]=='Punjab']
Punjab2008 = Punjab[Punjab[...,1]=='2008']
Punjab2008
Out[13]:
array([['Punjab', '2008', 'Causes', ..., 'Female', '0-14', '0'],
       ['Punjab', '2008', 'Causes', ..., 'Female', '0-14', '1'],
       ['Punjab', '2008', 'Causes', ..., 'Female', '0-14', '0'],
       ...,
       ['Punjab', '2008', 'Social_Status', ..., 'Male', '0-100+', '4'],
       ['Punjab', '2008', 'Social_Status', ..., 'Male', '0-100+', '404'],
       ['Punjab', '2008', 'Social_Status', ..., 'Male', '0-100+', '10']],
      dtype='<U46')
In [14]:
data
Out[14]:
array([['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ...,
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '5451'],
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '189'],
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '2658']], dtype='<U46')

or

In [15]:
data[(data[...,0]=='Punjab') & (data[...,1]=='2008')]
Out[15]:
array([['Punjab', '2008', 'Causes', ..., 'Female', '0-14', '0'],
       ['Punjab', '2008', 'Causes', ..., 'Female', '0-14', '1'],
       ['Punjab', '2008', 'Causes', ..., 'Female', '0-14', '0'],
       ...,
       ['Punjab', '2008', 'Social_Status', ..., 'Male', '0-100+', '4'],
       ['Punjab', '2008', 'Social_Status', ..., 'Male', '0-100+', '404'],
       ['Punjab', '2008', 'Social_Status', ..., 'Male', '0-100+', '10']],
      dtype='<U46')

Punjab 2008 Male

In [16]:
data[(data[...,0]=='Punjab') & (data[...,1]=='2008') & (data[...,4]=='Male')]
Out[16]:
array([['Punjab', '2008', 'Causes', ..., 'Male', '0-14', '1'],
       ['Punjab', '2008', 'Causes', ..., 'Male', '0-14', '0'],
       ['Punjab', '2008', 'Causes', ..., 'Male', '0-14', '0'],
       ...,
       ['Punjab', '2008', 'Social_Status', ..., 'Male', '0-100+', '4'],
       ['Punjab', '2008', 'Social_Status', ..., 'Male', '0-100+', '404'],
       ['Punjab', '2008', 'Social_Status', ..., 'Male', '0-100+', '10']],
      dtype='<U46')

Convert Datatype

In [17]:
data[...,6].astype('int')
Out[17]:
array([   0,    0,    0, ..., 5451,  189, 2658])

Total Suicides in India

In [18]:
#write your code here
data[...,6].astype('int').sum()
Out[18]:
13071734

Total Suicides in India State wise

In [19]:
#write your code here
for state in np.unique(data[...,0]):
    print(state,data[data[...,0]==state][...,6].astype('int').sum())
A & N Islands 8109
Andhra Pradesh 814059
Arunachal Pradesh 6633
Assam 172276
Bihar 46214
Chandigarh 5164
Chhattisgarh 302354
D & N Haveli 3430
Daman & Diu 1391
Delhi (Ut) 84272
Goa 17363
Gujarat 330858
Haryana 147176
Himachal Pradesh 26562
Jammu & Kashmir 14821
Jharkhand 49720
Karnataka 734825
Kerala 538946
Lakshadweep 50
Madhya Pradesh 451535
Maharashtra 901945
Manipur 2102
Meghalaya 5415
Mizoram 4154
Nagaland 1728
Odisha 267234
Puducherry 32144
Punjab 46350
Rajasthan 255134
Sikkim 9606
Tamil Nadu 818691
Total (All India) 2911862
Total (States) 2858026
Total (Uts) 53836
Tripura 45965
Uttar Pradesh 233352
Uttarakhand 18496
West Bengal 849936

Total Suicides in India Year wise

In [20]:
#write your code here
for year in np.unique(data[...,1]):
    print(year,data[data[...,1]==year][...,6].astype('int').sum())
2001 976464
2002 993648
2003 997622
2004 1023137
2005 1025201
2006 1062991
2007 1103667
2008 1125082
2009 1144033
2010 1211322
2011 1219499
2012 1189068

Total Suicides in India Gender wise

In [21]:
#write your code here
for gender in np.unique(data[...,4]):
    print(gender,data[data[...,4]==gender][...,6].astype('int').sum())
Female 4702974
Male 8368760

Total Suicides in India State-Year wise

In [22]:
data
Out[22]:
array([['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ['A & N Islands', '2001', 'Causes', ..., 'Female', '0-14', '0'],
       ...,
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '5451'],
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '189'],
       ['West Bengal', '2012', 'Social_Status', ..., 'Male', '0-100+',
        '2658']], dtype='<U46')
In [23]:
#write your code here
for state in np.unique(data[...,0]):
    for year in np.unique(data[...,1]):
        print(state,year,data[(data[...,0]==state) & (data[...,1]==year)][...,6].astype('int').sum())
A & N Islands 2001 645
A & N Islands 2002 720
A & N Islands 2003 565
A & N Islands 2004 610
A & N Islands 2005 695
A & N Islands 2006 665
A & N Islands 2007 775
A & N Islands 2008 714
A & N Islands 2009 655
A & N Islands 2010 780
A & N Islands 2011 680
A & N Islands 2012 605
Andhra Pradesh 2001 52610
Andhra Pradesh 2002 58465
Andhra Pradesh 2003 57045
Andhra Pradesh 2004 67630
Andhra Pradesh 2005 67210
Andhra Pradesh 2006 66380
Andhra Pradesh 2007 74410
Andhra Pradesh 2008 71729
Andhra Pradesh 2009 72500
Andhra Pradesh 2010 79505
Andhra Pradesh 2011 75385
Andhra Pradesh 2012 71190
Arunachal Pradesh 2001 555
Arunachal Pradesh 2002 570
Arunachal Pradesh 2003 405
Arunachal Pradesh 2004 395
Arunachal Pradesh 2005 350
Arunachal Pradesh 2006 645
Arunachal Pradesh 2007 644
Arunachal Pradesh 2008 549
Arunachal Pradesh 2009 549
Arunachal Pradesh 2010 655
Arunachal Pradesh 2011 670
Arunachal Pradesh 2012 646
Assam 2001 13230
Assam 2002 12550
Assam 2003 12963
Assam 2004 14178
Assam 2005 14209
Assam 2006 15155
Assam 2007 15301
Assam 2008 14945
Assam 2009 14830
Assam 2010 14965
Assam 2011 13630
Assam 2012 16320
Bihar 2001 3015
Bihar 2002 3600
Bihar 2003 2984
Bihar 2004 1755
Bihar 2005 2715
Bihar 2006 3090
Bihar 2007 4825
Bihar 2008 5075
Bihar 2009 5255
Bihar 2010 6130
Bihar 2011 3975
Bihar 2012 3795
Chandigarh 2001 350
Chandigarh 2002 435
Chandigarh 2003 515
Chandigarh 2004 375
Chandigarh 2005 445
Chandigarh 2006 400
Chandigarh 2007 408
Chandigarh 2008 415
Chandigarh 2009 374
Chandigarh 2010 355
Chandigarh 2011 525
Chandigarh 2012 567
Chhattisgarh 2001 20051
Chhattisgarh 2002 19750
Chhattisgarh 2003 19595
Chhattisgarh 2004 22475
Chhattisgarh 2005 24405
Chhattisgarh 2006 23130
Chhattisgarh 2007 24195
Chhattisgarh 2008 24725
Chhattisgarh 2009 29415
Chhattisgarh 2010 32563
Chhattisgarh 2011 33780
Chhattisgarh 2012 28270
D & N Haveli 2001 250
D & N Haveli 2002 250
D & N Haveli 2003 260
D & N Haveli 2004 195
D & N Haveli 2005 345
D & N Haveli 2006 210
D & N Haveli 2007 380
D & N Haveli 2008 300
D & N Haveli 2009 280
D & N Haveli 2010 315
D & N Haveli 2011 315
D & N Haveli 2012 330
Daman & Diu 2001 69
Daman & Diu 2002 85
Daman & Diu 2003 118
Daman & Diu 2004 65
Daman & Diu 2005 159
Daman & Diu 2006 110
Daman & Diu 2007 75
Daman & Diu 2008 95
Daman & Diu 2009 115
Daman & Diu 2010 155
Daman & Diu 2011 165
Daman & Diu 2012 180
Delhi (Ut) 2001 6195
Delhi (Ut) 2002 5265
Delhi (Ut) 2003 5765
Delhi (Ut) 2004 6277
Delhi (Ut) 2005 6224
Delhi (Ut) 2006 7458
Delhi (Ut) 2007 7405
Delhi (Ut) 2008 6511
Delhi (Ut) 2009 7385
Delhi (Ut) 2010 7713
Delhi (Ut) 2011 8580
Delhi (Ut) 2012 9494
Goa 2001 1280
Goa 2002 1545
Goa 2003 1500
Goa 2004 1570
Goa 2005 1410
Goa 2006 1375
Goa 2007 1350
Goa 2008 1431
Goa 2009 1382
Goa 2010 1610
Goa 2011 1465
Goa 2012 1445
Gujarat 2001 23955
Gujarat 2002 23216
Gujarat 2003 22830
Gujarat 2004 23868
Gujarat 2005 23825
Gujarat 2006 25172
Gujarat 2007 27900
Gujarat 2008 30818
Gujarat 2009 30779
Gujarat 2010 31035
Gujarat 2011 31910
Gujarat 2012 35550
Haryana 2001 10031
Haryana 2002 11000
Haryana 2003 11135
Haryana 2004 10410
Haryana 2005 10230
Haryana 2006 11580
Haryana 2007 12165
Haryana 2008 13280
Haryana 2009 12515
Haryana 2010 14470
Haryana 2011 16225
Haryana 2012 14135
Himachal Pradesh 2001 1535
Himachal Pradesh 2002 1670
Himachal Pradesh 2003 1926
Himachal Pradesh 2004 1840
Himachal Pradesh 2005 1795
Himachal Pradesh 2006 2285
Himachal Pradesh 2007 2010
Himachal Pradesh 2008 3148
Himachal Pradesh 2009 2800
Himachal Pradesh 2010 2703
Himachal Pradesh 2011 2214
Himachal Pradesh 2012 2636
Jammu & Kashmir 2001 765
Jammu & Kashmir 2002 919
Jammu & Kashmir 2003 690
Jammu & Kashmir 2004 560
Jammu & Kashmir 2005 1470
Jammu & Kashmir 2006 1301
Jammu & Kashmir 2007 1170
Jammu & Kashmir 2008 1547
Jammu & Kashmir 2009 1602
Jammu & Kashmir 2010 1295
Jammu & Kashmir 2011 1432
Jammu & Kashmir 2012 2070
Jharkhand 2001 1250
Jharkhand 2002 1360
Jharkhand 2003 1360
Jharkhand 2004 2085
Jharkhand 2005 4040
Jharkhand 2006 4280
Jharkhand 2007 6427
Jharkhand 2008 4555
Jharkhand 2009 5550
Jharkhand 2010 6158
Jharkhand 2011 6060
Jharkhand 2012 6595
Karnataka 2001 59405
Karnataka 2002 61350
Karnataka 2003 61805
Karnataka 2004 59685
Karnataka 2005 57785
Karnataka 2006 61060
Karnataka 2007 61520
Karnataka 2008 61110
Karnataka 2009 60975
Karnataka 2010 63255
Karnataka 2011 63110
Karnataka 2012 63765
Kerala 2001 47860
Kerala 2002 49050
Kerala 2003 47190
Kerala 2004 45265
Kerala 2005 46220
Kerala 2006 45130
Kerala 2007 44810
Kerala 2008 42845
Kerala 2009 43775
Kerala 2010 42930
Kerala 2011 41421
Kerala 2012 42450
Lakshadweep 2001 0
Lakshadweep 2002 0
Lakshadweep 2003 10
Lakshadweep 2004 0
Lakshadweep 2005 0
Lakshadweep 2006 10
Lakshadweep 2007 15
Lakshadweep 2008 0
Lakshadweep 2009 5
Lakshadweep 2010 5
Lakshadweep 2011 0
Lakshadweep 2012 5
Madhya Pradesh 2001 34300
Madhya Pradesh 2002 34495
Madhya Pradesh 2003 33810
Madhya Pradesh 2004 33975
Madhya Pradesh 2005 27240
Madhya Pradesh 2006 32175
Madhya Pradesh 2007 31645
Madhya Pradesh 2008 38145
Madhya Pradesh 2009 45565
Madhya Pradesh 2010 45015
Madhya Pradesh 2011 46295
Madhya Pradesh 2012 48875
Maharashtra 2001 73090
Maharashtra 2002 72645
Maharashtra 2003 73800
Maharashtra 2004 73645
Maharashtra 2005 72130
Maharashtra 2006 77470
Maharashtra 2007 75920
Maharashtra 2008 71870
Maharashtra 2009 71500
Maharashtra 2010 79580
Maharashtra 2011 79735
Maharashtra 2012 80560
Manipur 2001 205
Manipur 2002 195
Manipur 2003 130
Manipur 2004 204
Manipur 2005 134
Manipur 2006 180
Manipur 2007 195
Manipur 2008 170
Manipur 2009 134
Manipur 2010 185
Manipur 2011 165
Manipur 2012 205
Meghalaya 2001 435
Meghalaya 2002 332
Meghalaya 2003 205
Meghalaya 2004 275
Meghalaya 2005 355
Meghalaya 2006 459
Meghalaya 2007 435
Meghalaya 2008 424
Meghalaya 2009 557
Meghalaya 2010 537
Meghalaya 2011 761
Meghalaya 2012 640
Mizoram 2001 270
Mizoram 2002 330
Mizoram 2003 260
Mizoram 2004 300
Mizoram 2005 275
Mizoram 2006 348
Mizoram 2007 140
Mizoram 2008 205
Mizoram 2009 339
Mizoram 2010 380
Mizoram 2011 450
Mizoram 2012 857
Nagaland 2001 200
Nagaland 2002 135
Nagaland 2003 109
Nagaland 2004 155
Nagaland 2005 135
Nagaland 2006 140
Nagaland 2007 116
Nagaland 2008 210
Nagaland 2009 153
Nagaland 2010 60
Nagaland 2011 165
Nagaland 2012 150
Odisha 2001 20254
Odisha 2002 21940
Odisha 2003 22100
Odisha 2004 21075
Odisha 2005 21040
Odisha 2006 20325
Odisha 2007 21540
Odisha 2008 24520
Odisha 2009 21825
Odisha 2010 21275
Odisha 2011 26205
Odisha 2012 25135
Puducherry 2001 2645
Puducherry 2002 2835
Puducherry 2003 2910
Puducherry 2004 2694
Puducherry 2005 2690
Puducherry 2006 2630
Puducherry 2007 2585
Puducherry 2008 2535
Puducherry 2009 2590
Puducherry 2010 2540
Puducherry 2011 2785
Puducherry 2012 2705
Punjab 2001 3240
Punjab 2002 2535
Punjab 2003 3155
Punjab 2004 3225
Punjab 2005 2940
Punjab 2006 3860
Punjab 2007 4235
Punjab 2008 4345
Punjab 2009 4235
Punjab 2010 4600
Punjab 2011 4830
Punjab 2012 5150
Rajasthan 2001 15975
Rajasthan 2002 16240
Rajasthan 2003 18305
Rajasthan 2004 18625
Rajasthan 2005 20889
Rajasthan 2006 21315
Rajasthan 2007 22185
Rajasthan 2008 25830
Rajasthan 2009 25325
Rajasthan 2010 24600
Rajasthan 2011 21740
Rajasthan 2012 24105
Sikkim 2001 470
Sikkim 2002 383
Sikkim 2003 525
Sikkim 2004 488
Sikkim 2005 545
Sikkim 2006 725
Sikkim 2007 610
Sikkim 2008 1435
Sikkim 2009 1204
Sikkim 2010 1400
Sikkim 2011 916
Sikkim 2012 905
Tamil Nadu 2001 56450
Tamil Nadu 2002 56134
Tamil Nadu 2003 59360
Tamil Nadu 2004 64195
Tamil Nadu 2005 60380
Tamil Nadu 2006 61905
Tamil Nadu 2007 69055
Tamil Nadu 2008 72125
Tamil Nadu 2009 71832
Tamil Nadu 2010 82805
Tamil Nadu 2011 79815
Tamil Nadu 2012 84635
Total (All India) 2001 217012
Total (All India) 2002 220834
Total (All India) 2003 221702
Total (All India) 2004 227394
Total (All India) 2005 227828
Total (All India) 2006 236224
Total (All India) 2007 245274
Total (All India) 2008 250034
Total (All India) 2009 254302
Total (All India) 2010 269198
Total (All India) 2011 271170
Total (All India) 2012 270890
Total (States) 2001 212950
Total (States) 2002 216998
Total (States) 2003 217644
Total (States) 2004 223306
Total (States) 2005 223604
Total (States) 2006 231630
Total (States) 2007 240614
Total (States) 2008 245804
Total (States) 2009 249740
Total (States) 2010 264452
Total (States) 2011 265950
Total (States) 2012 265334
Total (Uts) 2001 4062
Total (Uts) 2002 3836
Total (Uts) 2003 4058
Total (Uts) 2004 4088
Total (Uts) 2005 4224
Total (Uts) 2006 4594
Total (Uts) 2007 4660
Total (Uts) 2008 4230
Total (Uts) 2009 4562
Total (Uts) 2010 4746
Total (Uts) 2011 5220
Total (Uts) 2012 5556
Tripura 2001 4270
Tripura 2002 3891
Tripura 2003 4220
Tripura 2004 3850
Tripura 2005 3575
Tripura 2006 3825
Tripura 2007 3525
Tripura 2008 3760
Tripura 2009 3689
Tripura 2010 3625
Tripura 2011 3515
Tripura 2012 4220
Uttar Pradesh 2001 17580
Uttar Pradesh 2002 21250
Uttar Pradesh 2003 18315
Uttar Pradesh 2004 18185
Uttar Pradesh 2005 17245
Uttar Pradesh 2006 15495
Uttar Pradesh 2007 19610
Uttar Pradesh 2008 20440
Uttar Pradesh 2009 20790
Uttar Pradesh 2010 18140
Uttar Pradesh 2011 24195
Uttar Pradesh 2012 22107
Uttarakhand 2001 1555
Uttarakhand 2002 1805
Uttarakhand 2003 1953
Uttarakhand 2004 1185
Uttarakhand 2005 1365
Uttarakhand 2006 1630
Uttarakhand 2007 1238
Uttarakhand 2008 948
Uttarakhand 2009 1710
Uttarakhand 2010 1402
Uttarakhand 2011 1585
Uttarakhand 2012 2120
West Bengal 2001 68450
West Bengal 2002 65035
West Bengal 2003 66400
West Bengal 2004 67035
West Bengal 2005 75075
West Bengal 2006 78625
West Bengal 2007 74300
West Bengal 2008 74260
West Bengal 2009 73240
West Bengal 2010 80185
West Bengal 2011 82460
West Bengal 2012 44871

Total Suicides in India State-Gender wise

In [24]:
#write your code here
for state in np.unique(data[...,0]):
    for gender in np.unique(data[...,4]):
        print(state,gender,data[(data[...,0]==state) & (data[...,4]==gender)][...,6].astype('int').sum())
A & N Islands Female 2750
A & N Islands Male 5359
Andhra Pradesh Female 271939
Andhra Pradesh Male 542120
Arunachal Pradesh Female 1954
Arunachal Pradesh Male 4679
Assam Female 55124
Assam Male 117152
Bihar Female 20254
Bihar Male 25960
Chandigarh Female 1887
Chandigarh Male 3277
Chhattisgarh Female 98574
Chhattisgarh Male 203780
D & N Haveli Female 1400
D & N Haveli Male 2030
Daman & Diu Female 475
Daman & Diu Male 916
Delhi (Ut) Female 30678
Delhi (Ut) Male 53594
Goa Female 5522
Goa Male 11841
Gujarat Female 132493
Gujarat Male 198365
Haryana Female 39106
Haryana Male 108070
Himachal Pradesh Female 9641
Himachal Pradesh Male 16921
Jammu & Kashmir Female 6805
Jammu & Kashmir Male 8016
Jharkhand Female 17682
Jharkhand Male 32038
Karnataka Female 242870
Karnataka Male 491955
Kerala Female 145153
Kerala Male 393793
Lakshadweep Female 30
Lakshadweep Male 20
Madhya Pradesh Female 203150
Madhya Pradesh Male 248385
Maharashtra Female 293175
Maharashtra Male 608770
Manipur Female 664
Manipur Male 1438
Meghalaya Female 1558
Meghalaya Male 3857
Mizoram Female 555
Mizoram Male 3599
Nagaland Female 433
Nagaland Male 1295
Odisha Female 109605
Odisha Male 157629
Puducherry Female 11004
Puducherry Male 21140
Punjab Female 10975
Punjab Male 35375
Rajasthan Female 82289
Rajasthan Male 172845
Sikkim Female 3319
Sikkim Male 6287
Tamil Nadu Female 306485
Tamil Nadu Male 512206
Total (All India) Female 1048026
Total (All India) Male 1863836
Total (States) Female 1028730
Total (States) Male 1829296
Total (Uts) Female 19296
Total (Uts) Male 34540
Tripura Female 18559
Tripura Male 27406
Uttar Pradesh Female 108025
Uttar Pradesh Male 125327
Uttarakhand Female 7548
Uttarakhand Male 10948
West Bengal Female 365241
West Bengal Male 484695

Total Suicides in India Year-Gender wise

In [25]:
#write your code here
for year in np.unique(data[...,1]):
    for gender in np.unique(data[...,4]):
        print(year,gender,data[(data[...,1]==year) & (data[...,4]==gender)][...,6].astype('int').sum())
2001 Female 379645
2001 Male 596819
2002 Female 369675
2002 Male 623973
2003 Female 365657
2003 Male 631965
2004 Female 369297
2004 Male 653840
2005 Female 368980
2005 Male 656221
2006 Female 381677
2006 Male 681314
2007 Female 390032
2007 Male 713635
2008 Female 400202
2008 Male 724880
2009 Female 411050
2009 Male 732983
2010 Female 426705
2010 Male 784617
2011 Female 429688
2011 Male 789811
2012 Female 410366
2012 Male 778702

Total Suicides in India State-Year-Gender wise

In [26]:
#write your code here
#write your code here
for state in np.unique(data[...,0]):
    for year in np.unique(data[...,1]):
        for gender in np.unique(data[...,4]):
            print(state,year,gender,data[(data[...,0]==state) & (data[...,1]==year) & (data[...,4]==gender)][...,6].astype('int').sum())
A & N Islands 2001 Female 250
A & N Islands 2001 Male 395
A & N Islands 2002 Female 265
A & N Islands 2002 Male 455
A & N Islands 2003 Female 215
A & N Islands 2003 Male 350
A & N Islands 2004 Female 205
A & N Islands 2004 Male 405
A & N Islands 2005 Female 265
A & N Islands 2005 Male 430
A & N Islands 2006 Female 185
A & N Islands 2006 Male 480
A & N Islands 2007 Female 280
A & N Islands 2007 Male 495
A & N Islands 2008 Female 225
A & N Islands 2008 Male 489
A & N Islands 2009 Female 225
A & N Islands 2009 Male 430
A & N Islands 2010 Female 220
A & N Islands 2010 Male 560
A & N Islands 2011 Female 210
A & N Islands 2011 Male 470
A & N Islands 2012 Female 205
A & N Islands 2012 Male 400
Andhra Pradesh 2001 Female 20715
Andhra Pradesh 2001 Male 31895
Andhra Pradesh 2002 Female 20610
Andhra Pradesh 2002 Male 37855
Andhra Pradesh 2003 Female 19480
Andhra Pradesh 2003 Male 37565
Andhra Pradesh 2004 Female 22220
Andhra Pradesh 2004 Male 45410
Andhra Pradesh 2005 Female 22885
Andhra Pradesh 2005 Male 44325
Andhra Pradesh 2006 Female 22065
Andhra Pradesh 2006 Male 44315
Andhra Pradesh 2007 Female 24665
Andhra Pradesh 2007 Male 49745
Andhra Pradesh 2008 Female 23124
Andhra Pradesh 2008 Male 48605
Andhra Pradesh 2009 Female 23065
Andhra Pradesh 2009 Male 49435
Andhra Pradesh 2010 Female 24770
Andhra Pradesh 2010 Male 54735
Andhra Pradesh 2011 Female 24785
Andhra Pradesh 2011 Male 50600
Andhra Pradesh 2012 Female 23555
Andhra Pradesh 2012 Male 47635
Arunachal Pradesh 2001 Female 175
Arunachal Pradesh 2001 Male 380
Arunachal Pradesh 2002 Female 215
Arunachal Pradesh 2002 Male 355
Arunachal Pradesh 2003 Female 135
Arunachal Pradesh 2003 Male 270
Arunachal Pradesh 2004 Female 150
Arunachal Pradesh 2004 Male 245
Arunachal Pradesh 2005 Female 105
Arunachal Pradesh 2005 Male 245
Arunachal Pradesh 2006 Female 165
Arunachal Pradesh 2006 Male 480
Arunachal Pradesh 2007 Female 154
Arunachal Pradesh 2007 Male 490
Arunachal Pradesh 2008 Female 165
Arunachal Pradesh 2008 Male 384
Arunachal Pradesh 2009 Female 165
Arunachal Pradesh 2009 Male 384
Arunachal Pradesh 2010 Female 200
Arunachal Pradesh 2010 Male 455
Arunachal Pradesh 2011 Female 175
Arunachal Pradesh 2011 Male 495
Arunachal Pradesh 2012 Female 150
Arunachal Pradesh 2012 Male 496
Assam 2001 Female 4050
Assam 2001 Male 9180
Assam 2002 Female 4040
Assam 2002 Male 8510
Assam 2003 Female 4600
Assam 2003 Male 8363
Assam 2004 Female 4453
Assam 2004 Male 9725
Assam 2005 Female 4475
Assam 2005 Male 9734
Assam 2006 Female 4575
Assam 2006 Male 10580
Assam 2007 Female 4721
Assam 2007 Male 10580
Assam 2008 Female 5095
Assam 2008 Male 9850
Assam 2009 Female 5420
Assam 2009 Male 9410
Assam 2010 Female 4835
Assam 2010 Male 10130
Assam 2011 Female 4500
Assam 2011 Male 9130
Assam 2012 Female 4360
Assam 2012 Male 11960
Bihar 2001 Female 1480
Bihar 2001 Male 1535
Bihar 2002 Female 1470
Bihar 2002 Male 2130
Bihar 2003 Female 1229
Bihar 2003 Male 1755
Bihar 2004 Female 695
Bihar 2004 Male 1060
Bihar 2005 Female 1080
Bihar 2005 Male 1635
Bihar 2006 Female 1595
Bihar 2006 Male 1495
Bihar 2007 Female 2155
Bihar 2007 Male 2670
Bihar 2008 Female 2030
Bihar 2008 Male 3045
Bihar 2009 Female 2685
Bihar 2009 Male 2570
Bihar 2010 Female 2570
Bihar 2010 Male 3560
Bihar 2011 Female 1745
Bihar 2011 Male 2230
Bihar 2012 Female 1520
Bihar 2012 Male 2275
Chandigarh 2001 Female 155
Chandigarh 2001 Male 195
Chandigarh 2002 Female 170
Chandigarh 2002 Male 265
Chandigarh 2003 Female 175
Chandigarh 2003 Male 340
Chandigarh 2004 Female 115
Chandigarh 2004 Male 260
Chandigarh 2005 Female 130
Chandigarh 2005 Male 315
Chandigarh 2006 Female 120
Chandigarh 2006 Male 280
Chandigarh 2007 Female 110
Chandigarh 2007 Male 298
Chandigarh 2008 Female 125
Chandigarh 2008 Male 290
Chandigarh 2009 Female 155
Chandigarh 2009 Male 219
Chandigarh 2010 Female 200
Chandigarh 2010 Male 155
Chandigarh 2011 Female 240
Chandigarh 2011 Male 285
Chandigarh 2012 Female 192
Chandigarh 2012 Male 375
Chhattisgarh 2001 Female 6851
Chhattisgarh 2001 Male 13200
Chhattisgarh 2002 Female 6605
Chhattisgarh 2002 Male 13145
Chhattisgarh 2003 Female 6635
Chhattisgarh 2003 Male 12960
Chhattisgarh 2004 Female 7545
Chhattisgarh 2004 Male 14930
Chhattisgarh 2005 Female 7880
Chhattisgarh 2005 Male 16525
Chhattisgarh 2006 Female 7830
Chhattisgarh 2006 Male 15300
Chhattisgarh 2007 Female 7915
Chhattisgarh 2007 Male 16280
Chhattisgarh 2008 Female 8485
Chhattisgarh 2008 Male 16240
Chhattisgarh 2009 Female 9645
Chhattisgarh 2009 Male 19770
Chhattisgarh 2010 Female 9838
Chhattisgarh 2010 Male 22725
Chhattisgarh 2011 Female 11145
Chhattisgarh 2011 Male 22635
Chhattisgarh 2012 Female 8200
Chhattisgarh 2012 Male 20070
D & N Haveli 2001 Female 75
D & N Haveli 2001 Male 175
D & N Haveli 2002 Female 90
D & N Haveli 2002 Male 160
D & N Haveli 2003 Female 110
D & N Haveli 2003 Male 150
D & N Haveli 2004 Female 95
D & N Haveli 2004 Male 100
D & N Haveli 2005 Female 140
D & N Haveli 2005 Male 205
D & N Haveli 2006 Female 95
D & N Haveli 2006 Male 115
D & N Haveli 2007 Female 160
D & N Haveli 2007 Male 220
D & N Haveli 2008 Female 140
D & N Haveli 2008 Male 160
D & N Haveli 2009 Female 130
D & N Haveli 2009 Male 150
D & N Haveli 2010 Female 130
D & N Haveli 2010 Male 185
D & N Haveli 2011 Female 110
D & N Haveli 2011 Male 205
D & N Haveli 2012 Female 125
D & N Haveli 2012 Male 205
Daman & Diu 2001 Female 20
Daman & Diu 2001 Male 49
Daman & Diu 2002 Female 10
Daman & Diu 2002 Male 75
Daman & Diu 2003 Female 30
Daman & Diu 2003 Male 88
Daman & Diu 2004 Female 40
Daman & Diu 2004 Male 25
Daman & Diu 2005 Female 35
Daman & Diu 2005 Male 124
Daman & Diu 2006 Female 40
Daman & Diu 2006 Male 70
Daman & Diu 2007 Female 45
Daman & Diu 2007 Male 30
Daman & Diu 2008 Female 25
Daman & Diu 2008 Male 70
Daman & Diu 2009 Female 40
Daman & Diu 2009 Male 75
Daman & Diu 2010 Female 60
Daman & Diu 2010 Male 95
Daman & Diu 2011 Female 75
Daman & Diu 2011 Male 90
Daman & Diu 2012 Female 55
Daman & Diu 2012 Male 125
Delhi (Ut) 2001 Female 2545
Delhi (Ut) 2001 Male 3650
Delhi (Ut) 2002 Female 2050
Delhi (Ut) 2002 Male 3215
Delhi (Ut) 2003 Female 2060
Delhi (Ut) 2003 Male 3705
Delhi (Ut) 2004 Female 2283
Delhi (Ut) 2004 Male 3994
Delhi (Ut) 2005 Female 2339
Delhi (Ut) 2005 Male 3885
Delhi (Ut) 2006 Female 2658
Delhi (Ut) 2006 Male 4800
Delhi (Ut) 2007 Female 2575
Delhi (Ut) 2007 Male 4830
Delhi (Ut) 2008 Female 2536
Delhi (Ut) 2008 Male 3975
Delhi (Ut) 2009 Female 2720
Delhi (Ut) 2009 Male 4665
Delhi (Ut) 2010 Female 2908
Delhi (Ut) 2010 Male 4805
Delhi (Ut) 2011 Female 2740
Delhi (Ut) 2011 Male 5840
Delhi (Ut) 2012 Female 3264
Delhi (Ut) 2012 Male 6230
Goa 2001 Female 445
Goa 2001 Male 835
Goa 2002 Female 415
Goa 2002 Male 1130
Goa 2003 Female 435
Goa 2003 Male 1065
Goa 2004 Female 510
Goa 2004 Male 1060
Goa 2005 Female 425
Goa 2005 Male 985
Goa 2006 Female 460
Goa 2006 Male 915
Goa 2007 Female 460
Goa 2007 Male 890
Goa 2008 Female 520
Goa 2008 Male 911
Goa 2009 Female 467
Goa 2009 Male 915
Goa 2010 Female 430
Goa 2010 Male 1180
Goa 2011 Female 490
Goa 2011 Male 975
Goa 2012 Female 465
Goa 2012 Male 980
Gujarat 2001 Female 10710
Gujarat 2001 Male 13245
Gujarat 2002 Female 9686
Gujarat 2002 Male 13530
Gujarat 2003 Female 9580
Gujarat 2003 Male 13250
Gujarat 2004 Female 9618
Gujarat 2004 Male 14250
Gujarat 2005 Female 9315
Gujarat 2005 Male 14510
Gujarat 2006 Female 9932
Gujarat 2006 Male 15240
Gujarat 2007 Female 11025
Gujarat 2007 Male 16875
Gujarat 2008 Female 12143
Gujarat 2008 Male 18675
Gujarat 2009 Female 12424
Gujarat 2009 Male 18355
Gujarat 2010 Female 11970
Gujarat 2010 Male 19065
Gujarat 2011 Female 12350
Gujarat 2011 Male 19560
Gujarat 2012 Female 13740
Gujarat 2012 Male 21810
Haryana 2001 Female 3211
Haryana 2001 Male 6820
Haryana 2002 Female 3150
Haryana 2002 Male 7850
Haryana 2003 Female 3070
Haryana 2003 Male 8065
Haryana 2004 Female 3140
Haryana 2004 Male 7270
Haryana 2005 Female 2765
Haryana 2005 Male 7465
Haryana 2006 Female 2750
Haryana 2006 Male 8830
Haryana 2007 Female 2905
Haryana 2007 Male 9260
Haryana 2008 Female 3410
Haryana 2008 Male 9870
Haryana 2009 Female 3440
Haryana 2009 Male 9075
Haryana 2010 Female 3580
Haryana 2010 Male 10890
Haryana 2011 Female 3905
Haryana 2011 Male 12320
Haryana 2012 Female 3780
Haryana 2012 Male 10355
Himachal Pradesh 2001 Female 650
Himachal Pradesh 2001 Male 885
Himachal Pradesh 2002 Female 630
Himachal Pradesh 2002 Male 1040
Himachal Pradesh 2003 Female 730
Himachal Pradesh 2003 Male 1196
Himachal Pradesh 2004 Female 675
Himachal Pradesh 2004 Male 1165
Himachal Pradesh 2005 Female 725
Himachal Pradesh 2005 Male 1070
Himachal Pradesh 2006 Female 780
Himachal Pradesh 2006 Male 1505
Himachal Pradesh 2007 Female 720
Himachal Pradesh 2007 Male 1290
Himachal Pradesh 2008 Female 1063
Himachal Pradesh 2008 Male 2085
Himachal Pradesh 2009 Female 970
Himachal Pradesh 2009 Male 1830
Himachal Pradesh 2010 Female 963
Himachal Pradesh 2010 Male 1740
Himachal Pradesh 2011 Female 869
Himachal Pradesh 2011 Male 1345
Himachal Pradesh 2012 Female 866
Himachal Pradesh 2012 Male 1770
Jammu & Kashmir 2001 Female 310
Jammu & Kashmir 2001 Male 455
Jammu & Kashmir 2002 Female 440
Jammu & Kashmir 2002 Male 479
Jammu & Kashmir 2003 Female 375
Jammu & Kashmir 2003 Male 315
Jammu & Kashmir 2004 Female 305
Jammu & Kashmir 2004 Male 255
Jammu & Kashmir 2005 Female 490
Jammu & Kashmir 2005 Male 980
Jammu & Kashmir 2006 Female 542
Jammu & Kashmir 2006 Male 759
Jammu & Kashmir 2007 Female 405
Jammu & Kashmir 2007 Male 765
Jammu & Kashmir 2008 Female 665
Jammu & Kashmir 2008 Male 882
Jammu & Kashmir 2009 Female 765
Jammu & Kashmir 2009 Male 837
Jammu & Kashmir 2010 Female 685
Jammu & Kashmir 2010 Male 610
Jammu & Kashmir 2011 Female 713
Jammu & Kashmir 2011 Male 719
Jammu & Kashmir 2012 Female 1110
Jammu & Kashmir 2012 Male 960
Jharkhand 2001 Female 545
Jharkhand 2001 Male 705
Jharkhand 2002 Female 595
Jharkhand 2002 Male 765
Jharkhand 2003 Female 595
Jharkhand 2003 Male 765
Jharkhand 2004 Female 920
Jharkhand 2004 Male 1165
Jharkhand 2005 Female 1425
Jharkhand 2005 Male 2615
Jharkhand 2006 Female 1675
Jharkhand 2006 Male 2605
Jharkhand 2007 Female 2027
Jharkhand 2007 Male 4400
Jharkhand 2008 Female 1545
Jharkhand 2008 Male 3010
Jharkhand 2009 Female 1830
Jharkhand 2009 Male 3720
Jharkhand 2010 Female 2185
Jharkhand 2010 Male 3973
Jharkhand 2011 Female 1935
Jharkhand 2011 Male 4125
Jharkhand 2012 Female 2405
Jharkhand 2012 Male 4190
Karnataka 2001 Female 20050
Karnataka 2001 Male 39355
Karnataka 2002 Female 20950
Karnataka 2002 Male 40400
Karnataka 2003 Female 19930
Karnataka 2003 Male 41875
Karnataka 2004 Female 19595
Karnataka 2004 Male 40090
Karnataka 2005 Female 19250
Karnataka 2005 Male 38535
Karnataka 2006 Female 20820
Karnataka 2006 Male 40240
Karnataka 2007 Female 19560
Karnataka 2007 Male 41960
Karnataka 2008 Female 20030
Karnataka 2008 Male 41080
Karnataka 2009 Female 19930
Karnataka 2009 Male 41045
Karnataka 2010 Female 21220
Karnataka 2010 Male 42035
Karnataka 2011 Female 20750
Karnataka 2011 Male 42360
Karnataka 2012 Female 20785
Karnataka 2012 Male 42980
Kerala 2001 Female 13925
Kerala 2001 Male 33935
Kerala 2002 Female 13225
Kerala 2002 Male 35825
Kerala 2003 Female 12515
Kerala 2003 Male 34675
Kerala 2004 Female 12275
Kerala 2004 Male 32990
Kerala 2005 Female 12070
Kerala 2005 Male 34150
Kerala 2006 Female 12215
Kerala 2006 Male 32915
Kerala 2007 Female 11870
Kerala 2007 Male 32940
Kerala 2008 Female 12195
Kerala 2008 Male 30650
Kerala 2009 Female 12165
Kerala 2009 Male 31610
Kerala 2010 Female 11200
Kerala 2010 Male 31730
Kerala 2011 Female 11093
Kerala 2011 Male 30328
Kerala 2012 Female 10405
Kerala 2012 Male 32045
Lakshadweep 2001 Female 0
Lakshadweep 2001 Male 0
Lakshadweep 2002 Female 0
Lakshadweep 2002 Male 0
Lakshadweep 2003 Female 5
Lakshadweep 2003 Male 5
Lakshadweep 2004 Female 0
Lakshadweep 2004 Male 0
Lakshadweep 2005 Female 0
Lakshadweep 2005 Male 0
Lakshadweep 2006 Female 5
Lakshadweep 2006 Male 5
Lakshadweep 2007 Female 10
Lakshadweep 2007 Male 5
Lakshadweep 2008 Female 0
Lakshadweep 2008 Male 0
Lakshadweep 2009 Female 5
Lakshadweep 2009 Male 0
Lakshadweep 2010 Female 5
Lakshadweep 2010 Male 0
Lakshadweep 2011 Female 0
Lakshadweep 2011 Male 0
Lakshadweep 2012 Female 0
Lakshadweep 2012 Male 5
Madhya Pradesh 2001 Female 16620
Madhya Pradesh 2001 Male 17680
Madhya Pradesh 2002 Female 16600
Madhya Pradesh 2002 Male 17895
Madhya Pradesh 2003 Female 16120
Madhya Pradesh 2003 Male 17690
Madhya Pradesh 2004 Female 15805
Madhya Pradesh 2004 Male 18170
Madhya Pradesh 2005 Female 12985
Madhya Pradesh 2005 Male 14255
Madhya Pradesh 2006 Female 14660
Madhya Pradesh 2006 Male 17515
Madhya Pradesh 2007 Female 14295
Madhya Pradesh 2007 Male 17350
Madhya Pradesh 2008 Female 16320
Madhya Pradesh 2008 Male 21825
Madhya Pradesh 2009 Female 20065
Madhya Pradesh 2009 Male 25500
Madhya Pradesh 2010 Female 19580
Madhya Pradesh 2010 Male 25435
Madhya Pradesh 2011 Female 20095
Madhya Pradesh 2011 Male 26200
Madhya Pradesh 2012 Female 20005
Madhya Pradesh 2012 Male 28870
Maharashtra 2001 Female 26400
Maharashtra 2001 Male 46690
Maharashtra 2002 Female 25410
Maharashtra 2002 Male 47235
Maharashtra 2003 Female 24750
Maharashtra 2003 Male 49050
Maharashtra 2004 Female 24130
Maharashtra 2004 Male 49515
Maharashtra 2005 Female 24115
Maharashtra 2005 Male 48015
Maharashtra 2006 Female 24920
Maharashtra 2006 Male 52550
Maharashtra 2007 Female 23820
Maharashtra 2007 Male 52100
Maharashtra 2008 Female 22425
Maharashtra 2008 Male 49445
Maharashtra 2009 Female 22575
Maharashtra 2009 Male 48925
Maharashtra 2010 Female 25290
Maharashtra 2010 Male 54290
Maharashtra 2011 Female 25300
Maharashtra 2011 Male 54435
Maharashtra 2012 Female 24040
Maharashtra 2012 Male 56520
Manipur 2001 Female 85
Manipur 2001 Male 120
Manipur 2002 Female 45
Manipur 2002 Male 150
Manipur 2003 Female 25
Manipur 2003 Male 105
Manipur 2004 Female 45
Manipur 2004 Male 159
Manipur 2005 Female 20
Manipur 2005 Male 114
Manipur 2006 Female 60
Manipur 2006 Male 120
Manipur 2007 Female 55
Manipur 2007 Male 140
Manipur 2008 Female 55
Manipur 2008 Male 115
Manipur 2009 Female 44
Manipur 2009 Male 90
Manipur 2010 Female 65
Manipur 2010 Male 120
Manipur 2011 Female 75
Manipur 2011 Male 90
Manipur 2012 Female 90
Manipur 2012 Male 115
Meghalaya 2001 Female 90
Meghalaya 2001 Male 345
Meghalaya 2002 Female 90
Meghalaya 2002 Male 242
Meghalaya 2003 Female 45
Meghalaya 2003 Male 160
Meghalaya 2004 Female 80
Meghalaya 2004 Male 195
Meghalaya 2005 Female 105
Meghalaya 2005 Male 250
Meghalaya 2006 Female 115
Meghalaya 2006 Male 344
Meghalaya 2007 Female 135
Meghalaya 2007 Male 300
Meghalaya 2008 Female 139
Meghalaya 2008 Male 285
Meghalaya 2009 Female 222
Meghalaya 2009 Male 335
Meghalaya 2010 Female 138
Meghalaya 2010 Male 399
Meghalaya 2011 Female 209
Meghalaya 2011 Male 552
Meghalaya 2012 Female 190
Meghalaya 2012 Male 450
Mizoram 2001 Female 40
Mizoram 2001 Male 230
Mizoram 2002 Female 50
Mizoram 2002 Male 280
Mizoram 2003 Female 55
Mizoram 2003 Male 205
Mizoram 2004 Female 35
Mizoram 2004 Male 265
Mizoram 2005 Female 40
Mizoram 2005 Male 235
Mizoram 2006 Female 50
Mizoram 2006 Male 298
Mizoram 2007 Female 30
Mizoram 2007 Male 110
Mizoram 2008 Female 30
Mizoram 2008 Male 175
Mizoram 2009 Female 35
Mizoram 2009 Male 304
Mizoram 2010 Female 45
Mizoram 2010 Male 335
Mizoram 2011 Female 65
Mizoram 2011 Male 385
Mizoram 2012 Female 80
Mizoram 2012 Male 777
Nagaland 2001 Female 75
Nagaland 2001 Male 125
Nagaland 2002 Female 40
Nagaland 2002 Male 95
Nagaland 2003 Female 25
Nagaland 2003 Male 84
Nagaland 2004 Female 30
Nagaland 2004 Male 125
Nagaland 2005 Female 30
Nagaland 2005 Male 105
Nagaland 2006 Female 45
Nagaland 2006 Male 95
Nagaland 2007 Female 34
Nagaland 2007 Male 82
Nagaland 2008 Female 50
Nagaland 2008 Male 160
Nagaland 2009 Female 29
Nagaland 2009 Male 124
Nagaland 2010 Female 5
Nagaland 2010 Male 55
Nagaland 2011 Female 40
Nagaland 2011 Male 125
Nagaland 2012 Female 30
Nagaland 2012 Male 120
Odisha 2001 Female 9815
Odisha 2001 Male 10439
Odisha 2002 Female 8785
Odisha 2002 Male 13155
Odisha 2003 Female 8400
Odisha 2003 Male 13700
Odisha 2004 Female 8355
Odisha 2004 Male 12720
Odisha 2005 Female 8270
Odisha 2005 Male 12770
Odisha 2006 Female 8460
Odisha 2006 Male 11865
Odisha 2007 Female 9100
Odisha 2007 Male 12440
Odisha 2008 Female 8745
Odisha 2008 Male 15775
Odisha 2009 Female 8990
Odisha 2009 Male 12835
Odisha 2010 Female 9125
Odisha 2010 Male 12150
Odisha 2011 Female 10905
Odisha 2011 Male 15300
Odisha 2012 Female 10655
Odisha 2012 Male 14480
Puducherry 2001 Female 1030
Puducherry 2001 Male 1615
Puducherry 2002 Female 785
Puducherry 2002 Male 2050
Puducherry 2003 Female 970
Puducherry 2003 Male 1940
Puducherry 2004 Female 1004
Puducherry 2004 Male 1690
Puducherry 2005 Female 990
Puducherry 2005 Male 1700
Puducherry 2006 Female 885
Puducherry 2006 Male 1745
Puducherry 2007 Female 990
Puducherry 2007 Male 1595
Puducherry 2008 Female 865
Puducherry 2008 Male 1670
Puducherry 2009 Female 960
Puducherry 2009 Male 1630
Puducherry 2010 Female 875
Puducherry 2010 Male 1665
Puducherry 2011 Female 805
Puducherry 2011 Male 1980
Puducherry 2012 Female 845
Puducherry 2012 Male 1860
Punjab 2001 Female 1260
Punjab 2001 Male 1980
Punjab 2002 Female 550
Punjab 2002 Male 1985
Punjab 2003 Female 625
Punjab 2003 Male 2530
Punjab 2004 Female 645
Punjab 2004 Male 2580
Punjab 2005 Female 530
Punjab 2005 Male 2410
Punjab 2006 Female 810
Punjab 2006 Male 3050
Punjab 2007 Female 1075
Punjab 2007 Male 3160
Punjab 2008 Female 1130
Punjab 2008 Male 3215
Punjab 2009 Female 1060
Punjab 2009 Male 3175
Punjab 2010 Female 1005
Punjab 2010 Male 3595
Punjab 2011 Female 1055
Punjab 2011 Male 3775
Punjab 2012 Female 1230
Punjab 2012 Male 3920
Rajasthan 2001 Female 6180
Rajasthan 2001 Male 9795
Rajasthan 2002 Female 5780
Rajasthan 2002 Male 10460
Rajasthan 2003 Female 6360
Rajasthan 2003 Male 11945
Rajasthan 2004 Female 6195
Rajasthan 2004 Male 12430
Rajasthan 2005 Female 6599
Rajasthan 2005 Male 14290
Rajasthan 2006 Female 6765
Rajasthan 2006 Male 14550
Rajasthan 2007 Female 6415
Rajasthan 2007 Male 15770
Rajasthan 2008 Female 7820
Rajasthan 2008 Male 18010
Rajasthan 2009 Female 7770
Rajasthan 2009 Male 17555
Rajasthan 2010 Female 7775
Rajasthan 2010 Male 16825
Rajasthan 2011 Female 6660
Rajasthan 2011 Male 15080
Rajasthan 2012 Female 7970
Rajasthan 2012 Male 16135
Sikkim 2001 Female 160
Sikkim 2001 Male 310
Sikkim 2002 Female 120
Sikkim 2002 Male 263
Sikkim 2003 Female 185
Sikkim 2003 Male 340
Sikkim 2004 Female 210
Sikkim 2004 Male 278
Sikkim 2005 Female 235
Sikkim 2005 Male 310
Sikkim 2006 Female 235
Sikkim 2006 Male 490
Sikkim 2007 Female 190
Sikkim 2007 Male 420
Sikkim 2008 Female 355
Sikkim 2008 Male 1080
Sikkim 2009 Female 594
Sikkim 2009 Male 610
Sikkim 2010 Female 225
Sikkim 2010 Male 1175
Sikkim 2011 Female 385
Sikkim 2011 Male 531
Sikkim 2012 Female 425
Sikkim 2012 Male 480
Tamil Nadu 2001 Female 20810
Tamil Nadu 2001 Male 35640
Tamil Nadu 2002 Female 21219
Tamil Nadu 2002 Male 34915
Tamil Nadu 2003 Female 23590
Tamil Nadu 2003 Male 35770
Tamil Nadu 2004 Female 24465
Tamil Nadu 2004 Male 39730
Tamil Nadu 2005 Female 22845
Tamil Nadu 2005 Male 37535
Tamil Nadu 2006 Female 24360
Tamil Nadu 2006 Male 37545
Tamil Nadu 2007 Female 25620
Tamil Nadu 2007 Male 43435
Tamil Nadu 2008 Female 26910
Tamil Nadu 2008 Male 45215
Tamil Nadu 2009 Female 27321
Tamil Nadu 2009 Male 44511
Tamil Nadu 2010 Female 30045
Tamil Nadu 2010 Male 52760
Tamil Nadu 2011 Female 28405
Tamil Nadu 2011 Male 51410
Tamil Nadu 2012 Female 30895
Tamil Nadu 2012 Male 53740
Total (All India) 2001 Female 84384
Total (All India) 2001 Male 132628
Total (All India) 2002 Female 82170
Total (All India) 2002 Male 138664
Total (All India) 2003 Female 81260
Total (All India) 2003 Male 140442
Total (All India) 2004 Female 82092
Total (All India) 2004 Male 145302
Total (All India) 2005 Female 81996
Total (All India) 2005 Male 145832
Total (All India) 2006 Female 84820
Total (All India) 2006 Male 151404
Total (All India) 2007 Female 86684
Total (All India) 2007 Male 158590
Total (All India) 2008 Female 88946
Total (All India) 2008 Male 161088
Total (All India) 2009 Female 91360
Total (All India) 2009 Male 162942
Total (All India) 2010 Female 94838
Total (All India) 2010 Male 174360
Total (All India) 2011 Female 95492
Total (All India) 2011 Male 175678
Total (All India) 2012 Female 93984
Total (All India) 2012 Male 176906
Total (States) 2001 Female 82754
Total (States) 2001 Male 130196
Total (States) 2002 Female 80822
Total (States) 2002 Male 136176
Total (States) 2003 Female 79834
Total (States) 2003 Male 137810
Total (States) 2004 Female 80594
Total (States) 2004 Male 142712
Total (States) 2005 Female 80436
Total (States) 2005 Male 143168
Total (States) 2006 Female 83224
Total (States) 2006 Male 148406
Total (States) 2007 Female 85016
Total (States) 2007 Male 155598
Total (States) 2008 Female 87378
Total (States) 2008 Male 158426
Total (States) 2009 Female 89666
Total (States) 2009 Male 160074
Total (States) 2010 Female 93078
Total (States) 2010 Male 171374
Total (States) 2011 Female 93820
Total (States) 2011 Male 172130
Total (States) 2012 Female 92108
Total (States) 2012 Male 173226
Total (Uts) 2001 Female 1630
Total (Uts) 2001 Male 2432
Total (Uts) 2002 Female 1348
Total (Uts) 2002 Male 2488
Total (Uts) 2003 Female 1426
Total (Uts) 2003 Male 2632
Total (Uts) 2004 Female 1498
Total (Uts) 2004 Male 2590
Total (Uts) 2005 Female 1560
Total (Uts) 2005 Male 2664
Total (Uts) 2006 Female 1596
Total (Uts) 2006 Male 2998
Total (Uts) 2007 Female 1668
Total (Uts) 2007 Male 2992
Total (Uts) 2008 Female 1568
Total (Uts) 2008 Male 2662
Total (Uts) 2009 Female 1694
Total (Uts) 2009 Male 2868
Total (Uts) 2010 Female 1760
Total (Uts) 2010 Male 2986
Total (Uts) 2011 Female 1672
Total (Uts) 2011 Male 3548
Total (Uts) 2012 Female 1876
Total (Uts) 2012 Male 3680
Tripura 2001 Female 1955
Tripura 2001 Male 2315
Tripura 2002 Female 1430
Tripura 2002 Male 2461
Tripura 2003 Female 1780
Tripura 2003 Male 2440
Tripura 2004 Female 1685
Tripura 2004 Male 2165
Tripura 2005 Female 1570
Tripura 2005 Male 2005
Tripura 2006 Female 1685
Tripura 2006 Male 2140
Tripura 2007 Female 1430
Tripura 2007 Male 2095
Tripura 2008 Female 1550
Tripura 2008 Male 2210
Tripura 2009 Female 1354
Tripura 2009 Male 2335
Tripura 2010 Female 1420
Tripura 2010 Male 2205
Tripura 2011 Female 1280
Tripura 2011 Male 2235
Tripura 2012 Female 1420
Tripura 2012 Male 2800
Uttar Pradesh 2001 Female 8575
Uttar Pradesh 2001 Male 9005
Uttar Pradesh 2002 Female 9620
Uttar Pradesh 2002 Male 11630
Uttar Pradesh 2003 Female 8380
Uttar Pradesh 2003 Male 9935
Uttar Pradesh 2004 Female 8415
Uttar Pradesh 2004 Male 9770
Uttar Pradesh 2005 Female 8385
Uttar Pradesh 2005 Male 8860
Uttar Pradesh 2006 Female 6690
Uttar Pradesh 2006 Male 8805
Uttar Pradesh 2007 Female 9350
Uttar Pradesh 2007 Male 10260
Uttar Pradesh 2008 Female 9545
Uttar Pradesh 2008 Male 10895
Uttar Pradesh 2009 Female 9595
Uttar Pradesh 2009 Male 11195
Uttar Pradesh 2010 Female 9205
Uttar Pradesh 2010 Male 8935
Uttar Pradesh 2011 Female 10630
Uttar Pradesh 2011 Male 13565
Uttar Pradesh 2012 Female 9635
Uttar Pradesh 2012 Male 12472
Uttarakhand 2001 Female 645
Uttarakhand 2001 Male 910
Uttarakhand 2002 Female 780
Uttarakhand 2002 Male 1025
Uttarakhand 2003 Female 643
Uttarakhand 2003 Male 1310
Uttarakhand 2004 Female 445
Uttarakhand 2004 Male 740
Uttarakhand 2005 Female 465
Uttarakhand 2005 Male 900
Uttarakhand 2006 Female 765
Uttarakhand 2006 Male 865
Uttarakhand 2007 Female 588
Uttarakhand 2007 Male 650
Uttarakhand 2008 Female 435
Uttarakhand 2008 Male 513
Uttarakhand 2009 Female 700
Uttarakhand 2009 Male 1010
Uttarakhand 2010 Female 582
Uttarakhand 2010 Male 820
Uttarakhand 2011 Female 625
Uttarakhand 2011 Male 960
Uttarakhand 2012 Female 875
Uttarakhand 2012 Male 1245
West Bengal 2001 Female 30975
West Bengal 2001 Male 37475
West Bengal 2002 Female 29415
West Bengal 2002 Male 35620
West Bengal 2003 Female 29280
West Bengal 2003 Male 37120
West Bengal 2004 Female 28730
West Bengal 2004 Male 38305
West Bengal 2005 Female 32005
West Bengal 2005 Male 43070
West Bengal 2006 Female 33025
West Bengal 2006 Male 45600
West Bengal 2007 Female 31775
West Bengal 2007 Male 42525
West Bengal 2008 Female 32415
West Bengal 2008 Male 41845
West Bengal 2009 Female 30770
West Bengal 2009 Male 42470
West Bengal 2010 Female 33680
West Bengal 2010 Male 46505
West Bengal 2011 Female 34340
West Bengal 2011 Male 48120
West Bengal 2012 Female 18831
West Bengal 2012 Male 26040

Total Suicides in Punjab 2008 due to Cancer

In [27]:
#write your code here
data[ (data[...,0]=='Punjab') & (data[...,1]=='2008') & (data[...,3]=='Cancer')][...,6].astype('int').sum()
Out[27]:
2

Save Each State Data in Separate CSV File

In [28]:
#write your code here
#write your code here
for state in np.unique(data[...,0]):
    STATE=data[data[...,0]==state]
    np.savetxt(state+".csv",STATE,fmt='%s',delimiter=",")

Save Punjab Data Year Wise in separate CSV File

In [29]:
#write your code here
Punjab = data[data[...,0]=='Punjab']
for year in np.unique(Punjab[...,1]):
    P_year = Punjab[Punjab[...,1]==year]
    np.savetxt("Punjab_"+year+".csv",P_year,fmt='%s',delimiter=",")

About Machine Learning

Check Also

Groupby in Pandas - Data Science Tutorials

Groupby in Pandas – Data Science Tutorials

14- Groupby Groupby in Pandas¶Pandas groupby is used for grouping the data according to the …

Leave a Reply

Your email address will not be published. Required fields are marked *