Thursday , September 12 2024
NumPy Array Sorting

NumPy Array Sorting

8 – Sort an Array

Sorting of an Array

In [2]:
import numpy as np
In [3]:
import numpy as np  
arr = np.array([[30,17,15],[19,90,16],[69,53,21]]) 
arr
Out[3]:
array([[30, 17, 15],
       [19, 90, 16],
       [69, 53, 21]])

sort an array along a specified axis

In [4]:
# sort along the row and return a copy
print(np.sort(arr, axis=0))   
[[19 17 15]
 [30 53 16]
 [69 90 21]]
In [5]:
# sort along the row in place
arr.sort(axis=0)
print(arr)
[[19 17 15]
 [30 53 16]
 [69 90 21]]
In [6]:
# sort along the column and return a copy
print(np.sort(arr, axis=1))    
[[15 17 19]
 [16 30 53]
 [21 69 90]]
In [7]:
# sort along the column in place
arr.sort(axis=1)    
print(arr)
[[15 17 19]
 [16 30 53]
 [21 69 90]]

Order parameter in sort function

In [8]:
dt = np.dtype([('name', 'S10'),('age', int)]) 
arr = np.array([("Karan",21),("Arpit",25),("Ashish", 17), ("Sam",27),("Robin",22)], dtype = dt)  
arr 
Out[8]:
array([(b'Karan', 21), (b'Arpit', 25), (b'Ashish', 17), (b'Sam', 27),
       (b'Robin', 22)], dtype=[('name', 'S10'), ('age', '<i4')])

Order by name

In [9]:
np.sort(arr, order = 'name')
Out[9]:
array([(b'Arpit', 25), (b'Ashish', 17), (b'Karan', 21), (b'Robin', 22),
       (b'Sam', 27)], dtype=[('name', 'S10'), ('age', '<i4')])

Order by age:

In [10]:
np.sort(arr, order = 'age')
Out[10]:
array([(b'Ashish', 17), (b'Karan', 21), (b'Robin', 22), (b'Arpit', 25),
       (b'Sam', 27)], dtype=[('name', 'S10'), ('age', '<i4')])

compute the indices that would sort an array along a specified axis

In [11]:
arr = np.random.rand(5,5)
arr
Out[11]:
array([[0.186465  , 0.06569589, 0.81277155, 0.38698898, 0.10392588],
       [0.4968922 , 0.54166813, 0.64418867, 0.72097399, 0.51464866],
       [0.30127114, 0.76583709, 0.63758779, 0.5547917 , 0.15375515],
       [0.05436687, 0.51985718, 0.89521853, 0.01108634, 0.94258898],
       [0.21192485, 0.31561459, 0.54977464, 0.41838968, 0.03012578]])
In [12]:
# along the row
print(np.argsort(arr, axis=0))
[[3 0 4 3 4]
 [0 4 2 0 0]
 [4 3 1 4 2]
 [2 1 0 2 1]
 [1 2 3 1 3]]
In [13]:
# along the column
print(np.argsort(arr, axis=1))
[[1 4 0 3 2]
 [0 4 1 2 3]
 [4 0 3 2 1]
 [3 0 1 2 4]
 [4 0 1 3 2]]
In [14]:
# if axis=None, return the indices of a flattened array
print(np.argsort(arr, axis=None))
[18 24 15  1  4 14  0 20 10 21  3 23  5  9 16  6 22 13 12  7  8 11  2 17
 19]

About Machine Learning

Check Also

Groupby in Pandas - Data Science Tutorials

Groupby in Pandas – Data Science Tutorials

14- Groupby Groupby in Pandas¶Pandas groupby is used for grouping the data according to the …

Leave a Reply

Your email address will not be published. Required fields are marked *